Artificial recruitment of mediator by the DNA-binding domain of Adr1 overcomes glucose repression of ADH2 expression.

نویسندگان

  • Elton T Young
  • Christine Tachibana
  • Hsin-Wen Ella Chang
  • Kenneth M Dombek
  • Erin M Arms
  • Rhiannon Biddick
چکیده

The transcription factor Adr1 activates numerous genes in nonfermentable carbon source metabolism. An unknown mechanism prevents Adr1 from stably binding to the promoters of these genes in glucose-grown cells. Glucose depletion leads to Snf1-dependent binding. Chromatin immunoprecipitation showed that the Adr1 DNA-binding domain could not be detected at the ADH2 promoter under conditions in which the binding of the full-length protein occurred. This suggested that an activation domain is required for stable binding, and coactivators may stabilize the interaction with the promoter. Artificial recruitment of Mediator tail subunits by fusion to the Adr1 DNA-binding domain overcame both the inhibition of promoter binding and glucose repression of ADH2 expression. In contrast, an Adr1 DNA-binding domain-Tbp fusion did not overcome glucose repression, although it was an efficient activator of ADH2 expression under derepressing conditions. When Mediator was artificially recruited, ADH2 expression was independent of SNF1, SAGA, and Swi/Snf, whereas ADH2 expression was dependent on these factors with wild-type Adr1. These results suggest that in the presence of glucose, the ADH2 promoter is accessible to Adr1 but that other interactions that occur when glucose is depleted do not take place. Artificial recruitment of Mediator appears to overcome this requirement and to allow stable binding and transcription under normally inhibitory conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Snf1-dependent and Snf1-independent pathways of constitutive ADH2 expression in Saccharomyces cerevisiae.

The transcription factor Adr1 directly activates the expression of genes encoding enzymes in numerous pathways that are upregulated after the exhaustion of glucose in the yeast Saccharomyces cerevisiae. ADH2, encoding the alcohol dehydrogenase isozyme required for ethanol oxidation, is a highly glucose-repressed, Adr1-dependent gene. Using a genetic screen we isolated >100 mutants in 12 complem...

متن کامل

Adr1 and Cat8 synergistically activate the glucose-regulated alcohol dehydrogenase gene ADH2 of the yeast Saccharomyces cerevisiae.

Glucose-repressible alcohol dehydrogenase II, encoded by the ADH2 gene of the yeast Saccharomyces cerevisiae, is transcriptionally controlled by the activator Adr1, binding UAS1 of the control region. However, even in an adr1 null mutant, a substantial level of gene derepression can be detected, arguing for the existence of a further mechanism of activation. Here it is shown that the previously...

متن کامل

Identification and characterization of three genes that affect expression of ADH2 in Saccharomyces cerevisiae.

Using a new selection protocol we have identified and preliminarily characterized three new loci (ADR7, ADR8 and ADR9) which affect ADH2 (alcohol dehydrogenase isozyme II) expression. Mutants were selected which activate ADH2 expression in the presence of an over-expressed, normally inactive ADR1 allele. The mutants had very similar phenotypes with the exception that one was temperature sensiti...

متن کامل

Adr1 and Cat8 Mediate Coactivator Recruitment and Chromatin Remodeling at Glucose-Regulated Genes

BACKGROUND Adr1 and Cat8 co-regulate numerous glucose-repressed genes in S. cerevisiae, presenting a unique opportunity to explore their individual roles in coactivator recruitment, chromatin remodeling, and transcription. METHODOLOGY/PRINCIPAL FINDINGS We determined the individual contributions of Cat8 and Adr1 on the expression of a cohort of glucose-repressed genes and found three broad ca...

متن کامل

The Reg1-interacting proteins, Bmh1, Bmh2, Ssb1, and Ssb2, have roles in maintaining glucose repression in Saccharomyces cerevisiae.

In Saccharomyces cerevisiae, a type 1 protein phosphatase complex composed of the Glc7 catalytic subunit and the Reg1 regulatory subunit represses expression of many glucose-regulated genes. Here we show that the Reg1-interacting proteins Bmh1, Bmh2, Ssb1, and Ssb2 have roles in glucose repression. Deleting both BMH genes causes partially constitutive ADH2 expression without significantly incre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 28 8  شماره 

صفحات  -

تاریخ انتشار 2008